



Carbohydrate Research 301 (1997) 221-224

## Note

# A simple synthesis of sugar disulfides using tetrathiomolybdate as a sulfur-transfer reagent

# Debjani Bhar, Srinivasan Chandrasekaran \*

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

Received 24 September 1996; accepted 6 March 1997

Keywords: Sugar disulfide; Tetrathiomolybdate; Sulfur-transfer reagent

Disulfide bonds play an important role in the chemistry of many natural products [1,2]. The S-S linkage formed at cysteine residues influences local conformation and stability in folded proteins and polypeptides [3,4], and sugar disulfides are significant in metabolism and are also found to be useful as structural models in enzymology [5]. Although sugar disulfides have been known for a long time, there has been no systematic study for a convenient synthesis of these molecules, and, in general, long and circuitous procedures are employed. For example, octaacetyl  $\beta$ ,  $\beta$ -diglucosyl disulfide was synthesised in three steps from tetra-O-acetyl- $\alpha$ -D-glucopyranosyl bromide via the formation of the xanthate, hydrolysis to the thiol, and then oxidation to the disulfide [6-8]. Even in the synthesis of 6,6'-dithiosucrose reported by two groups, Hough et al. [9] and Lees and Whitesides [10], an analogous procedure involving four steps was adopted.

We reported earlier that benzyltriethylammonium tetrathiomolybdate (1) is a useful sulfur-transfer reagent that converts a variety of alkyl halides to the corresponding disulfides with facility in inter- and intra-molecular reactions [11]. As part of our continuing interest in studying the scope and limitations of our methodology, we report herein a one-step, direct conversion of sugar halides to the corresponding sugar disulfides mediated by 1. A number of anomeric

The anomeric bromides derived from glucose and xylose 2 [12] and 4 [12], respectively, on treatment with 1 yielded the corresponding disulfides 3 and 5 in the  $\beta$  configuration (established from chemical shifts and coupling constants), in moderate isolated yields. The primary bromide 6 [13], on treatment with 1, afforded the corresponding disulfide 7 in 81% yield. The same reaction could also be carried out with facility on bromide 8 [13] containing unprotected hydroxy groups to give the disulfide 9 in 70% yield. Compound 9 could be converted to compound 7 by subjecting it to acetylation, and thus the identity was authenticated. The primary bromide 10 [14], derived from mannose, reacted with 1 to form the disulfide 11 in 78% yield. The dibromo compound 12 [9], derived from sucrose, also underwent a smooth sulfur-transfer reaction with 1 to form the cyclic disulfide in 30% isolated yield [9,10]. In this reaction, however, a considerable amount of starting material, which can be recycled, was recovered unchanged after chromatographic purification.

The present methodology, therefore, provides in a single step, direct access to a number of carbohydrate-derived disulfides that are otherwise made by circuitous routes. The easy accessibility of these sugar

bromides and primary bromides derived from carbohydrates were treated with a slight excess of tetrathiomolybdate 1 in CH<sub>3</sub>CN or DMF (0-25 °C, 19-72 h), and the corresponding disulfides were obtained in good yields. The results are summarised in Table 1.

<sup>\*</sup> Corresponding author.

disulfides will pave the way for the synthesis of a number of thio sugars that will undoubtedly be of use in asymmetric synthesis.

# 1. Experimental

General methods.—Acetonitrile (CH<sub>3</sub>CN) was distilled from P<sub>2</sub>O<sub>5</sub>. N, N-Dimethylformamide (Me<sub>2</sub>NCHO) was dried according to the literature procedure [15]. TLC was performed on 0.25-mm precoated silica gel plates (60F<sub>254</sub>). The mp's reported are uncorrected. Benzyltriethylammonium tetrathiomolybdate (1) was prepared as described earlier [11]. Sugar bromides were prepared according to the literature procedures [9,12–14]. For more reactive anomeric bromides 2 and 4, procedure A was adopted,

and for less reactive sugar bromides 6, 8, 10, and 12, procedure B was used.

Procedure A: Reaction of 2,3,4-tri-O-acetyl- $\alpha$ -D-xylopyranosyl bromide (4) with tetrathiomolybdate (1).—To a soln of anomeric bromide 4 (0.514 g, 1.51 mmol) in CH<sub>3</sub>CN (10 mL) was added tetrathiomolybdate 1 (1.01 g, 1.67 mmol), and the mixture was stirred at 0 °C for 19 h. Most of the solvent was evaporated under reduced pressure, and the black residue was slurried with CH<sub>2</sub>Cl<sub>2</sub> (2 mL) and ether (10 mL), then filtered through a pad of Celite and washed with ether (6 × 20 mL). The combined filtrate on removal of solvent yielded a crude product, which on recrystallisation (4:1 ether-hexane) afforded the pure disulfide 5 (0.19 g, 43%) as a white solid: mp 142–145 °C; [ $\alpha$ ]<sub>D</sub><sup>25</sup> – 262° (c 2.04, CHCl<sub>3</sub>); IR (Nujol):  $\nu$  1720, 1440, 1350, 1230, 1190 cm<sup>-1</sup>;

Table 1 Formation of sugar disulfides using benzyltriethylammonium tetrathiomolybdate (1) <sup>a</sup>

| Entry | Substrate               | Product    | Time (h)             | Yield (%)            |
|-------|-------------------------|------------|----------------------|----------------------|
| 1     | R R O Br                | R R S S 12 | . 24                 | 65                   |
| 2     | R R R Br                | R R S      | <del>)</del> 2 19    | 43                   |
| 3     | R R OCH <sub>3</sub>    | R R OCH    | 72<br>I <sub>3</sub> | 81 (86)              |
| 4     | Br O OCH3               | R1 R1 OCH  | 72<br>1 <sub>3</sub> | 70 (80)              |
| 6     | Br R O OCH <sub>3</sub> | R R OCH    | 72<br>9              | 78 (8 <del>4</del> ) |
| 6     | Br O R O R              | Br R R R   | R 72                 | 30 (80)              |

 $<sup>{}^{</sup>a}R = Oac; R^{1} = OH.$  Yields in parentheses are based on recovered starting materials.

<sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>):  $\delta$  5.27–5.05 (m, 4 H, H-5ax, 5eq, 5'ax, 5'eq), 5.05–4.88 (m, 2 H, H-4, 4'), 4.71 (d, 2 H,  $J_{1,2}$  8.0 Hz, H-1ax, 1'ax), 4.26 (dd, 2 H,  $J_{3,4}$  4.8,  $J_{2,3}$  11.8 Hz, H-3, 3'), 3.49 (dd, 2 H,  $J_{1,2}$  8.0,  $J_{2,3}$  11.8 Hz, H-2, 2'), 2.09 (s, 6 H, Ac), 2.07 (s, 6 H, Ac), 2.06 (s, 6 H, Ac); <sup>13</sup>C NMR (67.5 MHz, CDCl<sub>3</sub>):  $\delta$  170.3 (C=O), 170.2 (C=O), 169.6 (C=O), 88.9 (C-1, C-1'), 72.4 (C-2, C-2'), 69.9 (C-4, C-4'), 68.9 (C-3, C-3'), 65.9 (C-5, C-5'), 21.1 (3 × CH<sub>3</sub>). Anal. Calcd for C<sub>22</sub>H<sub>30</sub>O<sub>14</sub>S<sub>2</sub> (582.59): C, 45.36; H, 5.15. Found: C, 44.91; H, 5.12.

Procedure B: Reaction of methyl 2,3,4-tri-O-acetyl-6-bromo-6-deoxy- $\alpha$ -D-mannopyranoside (10) with tetrathiomolybdate (1).—To a soln of 1 (2.4 mmol, 1.44 g) in CH<sub>3</sub>CN (9 mL) and Me<sub>2</sub>NCHO (0.9 mL) was added the bromodeoxy compound 10 (0.83 g. 2.15 mmol), and the reaction mixture was stirred for 72 h at room temperature (25 °C). Two additional equiv of tetrathiomolybdate  $(2 \times 1.44 \text{ g})$  were added during the reaction at 24-h intervals. Once the reaction was over (TLC), it was worked up as described in the previous section. Column chromatography of the material on silica gel using 65:35 petroleum ether-EtOAc afforded the unreacted starting material **10** (8%, 0.063 g) and the disulfide **11** (0.56 g, 78%) as a white solid: mp 71-73 °C;  $[\alpha]_D^{25} + 171^\circ$  (c 1.1, CHCl<sub>3</sub>); IR (Nujol):  $\nu$  1740, 1450, 1360, 1230, 1210 cm<sup>-1</sup>; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>):  $\delta$  5.31 (dd, 2 H,  $J_{2,3}$  1.5,  $J_{3,4}$  10.5 Hz, H-3, 3'), 5.21 (m, 2 H, H-2, 2'), 5.12 (t, 2 H,  $J_{3,4} = J_{4,5} = 10.5$  Hz, H-4, 4'), 4.68 (s, 2 H, H-1ex, 1'ex), 4.08-3.94 (m, 2 H, H-5, 5'), 3.43 (s, 6 H, OCH<sub>3</sub>), 2.90 (d, 4 H, J<sub>5.6</sub> 5.3 Hz, H-6, 6'), 2.14 (s, 6 H, Ac), 2.07 (s, 6 H, Ac), 1.99 (s, 6 H, Ac);  $^{13}$ C NMR (50 MHz, CDCl<sub>2</sub>):  $\delta$  170.0 (3 × C=O), 98.4 (C-1, C-1'), 69.6, 69.2, 68.9 (C-2, C-2', C-3, C-3', C-4, C-4', C-5, C-5') 55.3 (OCH<sub>3</sub>), 41.4  $(C-6, C-6'), 20.8 (3 \times CH_3); FABMS (m/z) 670$ (M<sup>+</sup>, 38), 639 (45), 303 (16), 155 (30), 99 (40), 43 (100); Anal. Calcd for  $C_{26}H_{38}O_{16}S_2$  (670.69): C, 46.57; H, 5.67. Found: C, 46.83, H, 5.81.

Bis-(2,3,4,6-tetra-O-acetyl-1-deoxy-1-thio-β-D-glucopyranosyl) 1,1'-disulfide (3).—mp 140–142 °C, lit. 142–143 °C [6];  $[\alpha]_D^{25}$  – 149.8° (c 2.3, CHCl<sub>3</sub>), lit. –156° (c 2, CHCl<sub>3</sub>) [6]; IR (Nujol):  $\nu$  1720, 1435, 1350, 1200 cm<sup>-1</sup>; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>): δ 5.36–5.02 (m, 6 H, H-2, 2', 3, 3', 4, 4'), 4.66 (d, 2 H,  $J_{1,2}$  9.4 Hz, H-1ax, 1'ax), 4.28 (pair of dd, 4 H,  $J_{5,6b}$  1.8,  $J_{5,6a}$  4.2,  $J_{6a,6b}$  12.5 Hz, H-6, 6'), 3.81 (td, 2 H,  $J_{5,6}$  1.8,  $J_{4,5}$  9.9 Hz, H-5, 5'), 2.13 (s, 6 H, Ac), 2.1 (s, 6 H, Ac), 2.03 (s, 6 H, Ac), 2.0 (s, 6 H, Ac); <sup>13</sup>C NMR (22.5 MHz, CDCl<sub>3</sub>): δ 170.2, 169.5, 168.9 (4 × C=O), 86.6 (C-1, C-1'), 75.6 (C-2,

C-2'), 73.4 (C-5, C-5'), 69.2 (C-3, C-3'), 67.4 (C-4, C-4'), 61.2 (C-6, C-6'), 20.1 (4  $\times$  CH<sub>3</sub>); FABMS (m/z) 727 ([M + 1]<sup>+</sup>, 3), 667 (3), 547 (5), 331 (45), 169 (100), 109 (52). Anal. Calcd for C<sub>28</sub>H<sub>38</sub>O<sub>18</sub>S<sub>2</sub> (726.71): C, 46.28, H, 5.23. Found: C, 45.85, H 5.25.

Bis-(methyl 2,3,4-tri-O-acetyl-6-deoxy-6-thio-α-Dglucopyranoside) 6, 6' - disulfide (7).—mp 156-157 °C, lit. 156 °C [16];  $[\alpha]_D^{25} + 255^\circ$  (c 0.35, CHCl<sub>3</sub>), lit.  $+259^{\circ}$  (c 0.37, CHCl<sub>3</sub>) [16]; IR (Nujol):  $\nu$  1735, 1450, 1360, 1240, 1210 cm<sup>-1</sup>; <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>):  $\delta$  5.46 (t, 2 H,  $J_{3,4} = J_{4,5} = 9.7$  Hz, H-4, 4'), 5.00-4.81 (m, 6 H, H-1, 1', 2, 2', 3, 3'), 4.02 (td, 2 H,  $J_{5,6}$  3.2,  $J_{4,5}$  8.6 Hz, H-5, 5'), 3.44 (s, 6 H, OCH<sub>3</sub>), 2.86 (a pair of dd, 4 H,  $J_{5,6b}$  3.2,  $J_{5,6a}$  8.5,  $J_{6a\,6b}$  13.8 Hz, H-6, 6'), 2.07 (s, 6 H, Ac), 2.06 (s, 6 H, Ac), 2.00 (s, 6 H, Ac); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  169.7, 169.6 (3 × C=O), 96.5 (C-1, C-1'), 71.7 (C-4, C-4'), 70.8 (OCH<sub>2</sub>), 69.8 (C-2, C-2'), 67.5 (C-5, C-5'), 55.4 (C-3, C-3'), 41.4 (C-6, C-6'), 20.4  $(3 \times CH_3)$ ; FABMS (m/z): 670  $(M^+, 12)$ , 638 (12), 477 (7). Anal. Calcd for  $C_{26}H_{38}O_{16}S_2$  (670.69): C, 46.6, H, 5.71. Found: C, 46.1, H, 5.49.

Bis-(methyl 6-deoxy-6-thio- $\alpha$ -D-glucopyranoside) 6, 6'-disulfide (9) [16].—Compound 9 was isolated as a viscous liquid after the usual work-up and was additionally confirmed by acetylation, the product of which was identical to compound 7.

### Acknowledgements

We thank the Department of Science and Technology, New Delhi, for financial support of this investigation.

#### References

- [1] P.C. Jocelyn, *Biochemistry of the SH Group*, Academic Press, London, 1972.
- [2] R.J. Huxtable, *Biochemistry of Sulfur*, Plenum, New York, 1987.
- [3] T.E. Creighton, BioEssays, 8 (1988) 57-63.
- [4] D.M. Ziegler, Annu. Rev. Biochem., 54 (1985) 305-329.
- [5] H.F. Gilbert, Adv. Enzymol., 63 (1990) 69–172; K. Bock and R.U. Lemieux, Carbohydr. Res., 100 (1982) 63–74.
- [6] N.K. Richtmyer, C.J. Carr, and C.S. Hudson, J. Am. Chem. Soc., 65 (1943) 1477-1478.
- [7] W. Schneider, R. Gille, and K. Eisfeld, Ber., 61 (1928) 1244–1259.
- [8] D. Horton, Methods Carbohydr. Chem., 2 (1963) 433-437.
- [9] L. Hough, L.V. Sinchareonkul, A.C. Richardson, F.

- Akhtar, and M.G.B. Drew, Carbohydr. Res., 174 (1988) 145-160.
- [10] W.J. Lees and G.M. Whitesides, J. Am. Chem. Soc., 115 (1993) 1860–1869.
- [11] A.R. Ramesha and S. Chandrasekaran, Synth. Commun., 22 (1992) 3277-3284; J. Org. Chem., 59 (1994) 1354-1357.
- [12] P.G. Scheurer and F. Smith, J. Am. Chem. Soc., 76 (1954) 3224.
- [13] R.L. Whistler and A.K.M. Anisuzzaman, *Methods Carbohydr. Chem.*, 8 (1980) 227–231; M.M. Ponpipom and S. Hanessian, *Carbohydr. Res.*, 18 (1971) 342–344.
- [14] P. Wang, G.J. Shen, Y.F. Wang, Y. Ichikawa, and C.H. Wong, J. Org. Chem., 58 (1993) 3985-3990;
  M.L. Shulman, V.N. Yoldikov, and A.Y. Khorlin, Tetrahedron. Lett., (1970) 2517-2518.
- [15] B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith, and A.R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 4th ed., Longman Group Ltd, London, 1978, p 277.
- [16] D. Trimnell, E.I. Stout, W.M. Doane, C.R. Russell, V. Beringer, M. Saul, and G.V. Gessel, J. Org. Chem., 40 (1975) 1337-1339.